Fand

S

LEX

TECHNICAL MANUAL

LEX Version 9~

November 1985

Copyright ©1985 Ace Microsystems Limited

LEXET

This - manual was produced using LEX Version 9 and
LEXET. LEXET allows the production of typeset output
from LEX using a Laser printer.

For further details on LEXET please contact:

Ace Microsystems Ltd
Kew Bridge House
Kew Bridge Road

Brentford
Middlesex TW8 OEJ

The information in this document is subject to change
without notice and should not be construed as a
commitment by Ace Microsystems Ltd. The software
described in this manual is sold under licence and may
only be used or copied under the terms of that licence.

LEX is a trademark of Ace Microsystems Ltd.

PDP-11, VAX, RT-11, RSTS, RSX and VMS are
registered trademarks of Digital Equipment Corporation.
UNIX 1is a registered trademark of AT & T Bell
Laboratories.

LEX Technical Manual | Contents

Chapter 1. INTRODUCTION

1.1 MENU SWITCH OPTIONS oo 1-1
1.2 CONTROL FUNCTIONS\ 1-1
13 ESCAPE SEQUENCESo, 1-2
14 THE LEX DATABASE 1-3
1.5 CUSTOMISING AND TAILORING LEX 1-3
1.6 THE MANUAL\ 1-4

Chapter 2. LEX FILE STRUCTURE

2.1 THE START-UPMODULE 2-1
2.2 THE RUN-TIME SYSTEM 2-2
2.3 THE LEX CODE 2-2
2.4 THE WORK FILE 2-3
2.5 THE VIRTUAL MEMORY FILE 2-4
2.5.1 Structure of the VMF 2-5
2.5.2 The Structure of the Keys 2-8
253 Multi User VMF o i 2-9 .
2.5.4 Reading Records from the VMF 2-11
2.5.5 Creating New Records on the VMF 2-12
2.5.6 Updating Records on the VMF 2-14
257 Record Deletion 2-14
25.8 Record Locking 2-14
2.59 Reorganising the VMF 2-16
2.6 DOCUMENTS it it 2-17
2.6.1 File Structure 2-17
2.6.2 Document Naming Conventions 2-18
2.7 PLAYGROUND i 2-20

Chapter 3. INSTALLATIdN, SERIALISATION AND START UP
3.1 INSTALLING LEX 3-1

3.2 START UP PROCEDURE 3-2
3.2.1 Selecting the work file 3-2
3.2.2 Selecting the YDU at Run Time 3-4
3.2.3 Selecting the VMF 3-5
324 LEX demonstration version 3-5

3.3 SERIALISATION 3-6

Chapter 4. SELECTING START UP OPTIONS
4.1 COMMAND FILE B 4-1
42 TYPE AHEADo . oo 4-1
T.9A.3011/85

- 8.1 DEFINING VDU CHARACTERISTICS - *VDUFORM .

LEX Technical Manual | Contents

4.3 PATCHING LEX ENTRY OPTIONS 4-2
4.3.1 Using the Patch Program 4-2
432 Options to be Patched 4-4

Chapter 5. SYSTEM CONTROL RECORDS

5.1 SYSTEM DEFINITION AND DATE - *MONT 5-1
5.2 INSTALLATION DETAILS - *INST 59
5.3 PRINTER INSTALLATION DETAILS - *PNST 5-16
54 MAIN MENU - *MENU 5-19
5.5 LEX RE-ENTRY CONDITIONS - **START 5-20

Chapter 6. PROMPTS, MESSAGES AND WARNINGS

OOV OV O

1 GENERAL MESSAGES AND PROMPTS - **TEXT ... 6-2

2 VMF MANAGEMENT MESSAGES - *TEXT2 6-12
3 PRINTING MESSAGES - *TEXTP e 6-18
4 ERROR MESSAGES e e e e e 6-22
6.4.1 Automatic error messages e e e e e e e e 6-23
6.42 Delayed error messages v v i e e e e 6-23
6.4.3 Run time SYStEm €ITOIS . . . ¢ v vt v v v v v e v v oot o 6-24

Chapter 7. CONVERSION TABLES

7.1 CASE CONVERSION - *CASEFORM 7-1
7.2 SORTING - *SORTFORM 7-2
7.3 ~ 7-BIT TO 8-BIT FILE CONVERSION - *CONVFORM 7-3

Chapter 8. VDU AND KEYBOARD HANDLING

8
8.1.1 Visible equivalents definition 8
8.1.2 VDU fUunCtions vt v v vttt et ettt 8
8.1.3 ESCaApe SEQUENCES o v vt vt e e e oo eee e 8
8.1.3.1 Lead-in sequence definition 8
8.1.3.2 Linking received sequences to LEX functions . 8

8.1.4 Control characterst eeeenen.. 8-14
8.1.5 Function on MAappings e e e eveweeennn. 8
8.1.6 Control informationttt 8
8.2 FURTHER VDU CHARACTERISTICS - *YDUFORM2 8
8.3 VDU ATTRIBUTE DEFINITION - *VYDUFORM3 8
8.3.1 Visible equivalents definition 8
8.3.2 Switch off Attributes 8
8.3.3 Status and Error displays 8

T.9A.3011/85

LEX Technical Manual Contents

8.3.4 Edit and view mode attributes 8-23
8.3.5 VDU/printing attributes 8-25
8.4 LONG VDU ESCAPE SEQUENCES - *YDUFORM4 .. 8-27
8.4.1 Visible equivalents definition 8-28
8.4.2 Separator character 8-28
8.43 Escape SeqUENCeS v i rnunnn.n.. 8-28

8.5 VDU CHARACTER TRANSLATION TABLE
- *YDUTABLE i 8-30

Chapter 9. PRINTER HANDLING
9.1 ESCAPE SEQUENCES AND ATTRIBUTES

- *PRTFORM e e it 9-2
9.1.1 Visible equivalents definition 9-3
9.1.2 Escape sequences and special characters 9-4
9.2 COMBINATIONS OF ATTRIBUTES - *PRTFORM?2 .. 9-9
9.2.1 Visible equivalents definition 9-10
9.2.2 Attributes definition 9-10
9.3 PETAL SEQUENCES - *PETFORM 9-10
9.4 PETAL FUNCTIONS - *PETFUN" 9-13
9.5 DOCUMENT PRINTING DETAILS - *PAPER 9-15
9.5.1 Rulers e e e e e 9-17.
9.5.2 Abbreviations (keystores) 9-17 -
9.5.3

Printing Details« .o 9-17

Chapter 10. MENUS

10.1 FORMAT OF MENUS 10-1
10.2 MENU HIGHLIGHTS o ... 10-3

VISIBLE EQUIVALENTS 11-1

11.1

11.2 SETTING UP A LEX PROGRAM 11-3
11.2.1 Programs in keystoresv..... 11-3
11.2.2 Programs in VMF records 11-4

11.3 EXECUTING A LEX PROGRAM 11-5
11.3.1 Programs in keystoresv'uuu.... 11-5
11.3.2 Programs in YMF records 11-5
11.3.3 Executing records fromamenu 11-5

11.4 SOME PROGRAMMING FEATURES 11-6
11.4.1 Pause poIntS v vt ittt et e e e e 11-6
11,42 (ESOE 11-7
11.43 Panic - CIROC e e e e e 11-7

T.9A.3011/85

LEX Technical Manual | Contents

11.4.4 Comments 1N @ Program v v v v o v v v v v v .. 11-7
11.4.5 Conditionals 11-7
11.4.6 Shutup and shush modes 11-8
11.4.7 Programming levels 11-8
11.5 EXAMPLES OF PROGRAMS 11-1
11.5.1 Phrases and text blocks 11-10
11.5.2 Simple word processing program 11-11
11.5.3 Typical menu driven program 11-11
11.54 Useof thepause 11-11
11.5.5 Calculations in ### rulers 11-12
—~ 11.5.6 Calculationsonthespoto, .. 11-12
11.5.7 Documents with standard paragraphs 11-13
11.5.8 Use of conditionals 11-15
11.5.9 Use.of repeat 1oops o o v v v it it i e e e i e - 11-16
~ 11.5.10 Conditional repeatloops 11-19

Chapter 12. ARRANGING A LEX DATABASE

12.1 FORMS . . e e e e e e 12-1
12.1.1 Using forms e e ettt e e e 12-4
12.1.2 Editing restrictions in protected fields 12-4
12.1.3 The use of rulersinforms 12-5
12.1.4 Masking i it e e e 12-5
12.1.5 Accessing records in other VMFs 12-8
12.1.6 Field referencing (partial memeory reads) 12-9

- Chapter 13. REPORT GENERATING, LIST PROCESSING AND

MAILSHOT
13.1 THE DICTIONARY e e e 13-2
~ 13.1.1 Formatting character e e e e e e 13-2
- 13.1.2 Fieldname 13-4
13.1.3 Fieldlength, 13-4
13.2 THE SELECT FUNCTION 13-4
13.2.1 The help message i uninunmnnno.. 13-5
13.2.2 Searchingarangeof keys 13-6
13.2.3 Use of double quotes in selection 13-7
13.2.4 Use of wild cards in selection 13-7
13.2.5 Case independent searching 13-7
13.2.6 Numeric/alphanumeric comparisons 13-8
13.2.7 Automatic deletion of records e .. 13-8
13.2.8 Using system records for selection 13-9
13.3 OUTPUT FORMATS it e e 13-9
13.3.1 Top line e e 13-9
13.3.2 Heading lines 13-12

T.9A.3011/85

LEX Technical Manual Contents

13.3.3 Detail lIn€s . . . o o v i e 13-12
13.4 THE MAILSHOT DOCUMENT 13-14
13.5 OUTPUT FORMAT EXTENSION OPTIONS 13-14

13.5.1 Sorting the output 13-15

1352 Help MESSAZE . . . o v v vttt 13-15

13.5.3 Paint character« .o v vt v i ittt 13-16

13.54 Line spacing v vt v it e 13-16

13.5.5 Column totalling e e 13-16

13.5.6 Accessing data records in foreign files 13-17

13.5.7 Updating records during list processing 13-18

13.5.8

Print time INStTUCLIONS . & . v v v v v o et e e e e e e e e e 13-18

Chapter 14. DOCUMENT INDEX

14.1 STORING DOCUMENT INDEX INFORMATION 14-]
14.2 DOCUMENT INDEX DICTIONARY 14-2
14.3 DOCUMENT INDEX REPORTS 14-3

Appendix A MENU SWITCH OPTIONS

Appendix B. CONTROL FUNCTIONS

Appendix C. ESCAPE SEQUENCES

Appendix D. CALCULATOR COMMANDS

Appendix E. ERROR MESSAGES

Appendix F. PRINT TIME INSTRUCTIONS

Appendix G. THE LEX EDIT STATUS LINE

Appendix H. THE PAGE BREAK LINE

Appendix I. VISIBLE REPRESENTATION OF ATTRIBUTES
Appendix J. ASCII CHARACTER SET

INDEX

T.9A.3011/85

LEX Technical Manual Chapter 1. Introduction

1.1

1.2

Chapter 1. INTRODUCTION

This manual describes the operation of LEX from a systems
point of view and is intended for users who are involved in
customising the issued system for a particular application.

Originally called LEX-11 and operated on the Digital

Equipment Corporation range of PDP-11 computers, LEX has
now been extended for use with a wide variety of machines.
All versions are compiled from the same set of sources so the
only differences in operation are those caused by operating
system or YDU constraints.

Before detéiling the options with LEX it is worth reviewing
its major features.

LEX is a menu driven system and whenever a menu is on the
screen the required option can be selected by pressing the
appropriate key. These menus may be customised to suit a
particular need and may lead to other menus, documents, or
programs.)

MENU SWITCH OPTIONS

LEX has in built switch functions that may be included in the
menu options. When a LEX menu is displayed they may be
activated directly, bypassing the options shown on the screen.
This is achieved by entering s followed by a character
representing the option. Appropriate prompts then guide the
user through the option.

The menu switch options are described in Appendix A.

CONTROL FUNCTIONS

Control functions are activated by pressing the key
simultaneously with an alphabetic character key. Internally
LEX uses a fixed set of ERBORIFOG cacesw defined by the full
set of alphabetic characters 34 The meaning assigned
internally by LEX to a particular control code is invariant,
for example internal control code D always means ‘delete
character’.

T.9A.3011/85 - 1-1

LEX Technical Manual

1.3

1-2

In general a given and letter combination keystroke is
associated with the internal code which uses the same
alphabetic letter, for example and A 1s associated with
internal code A which means ‘insert a blank line’. A
description cf the full set of 26 control functions is given in
Appendix B. '

Certain operating systems regard some and letter
combinations as special input characters which are intercepted
by the operating system and not passed through to LEX at all.
Also, on certain VDUs, use of the cursor arrow or other
special function keys may send a and letter combination
to the computer. In such cases some of the internal control
codes used by LEX may not therefore be associated with the
normal (CTRD) and letter combination. Caution must therefore
be exercised when using Appendix B; the functions described
therein are INTERNAL to LEX but may be activated on a
particular system by a different and letter combinations
Or input escape sequences.

Control functions may be actioned when LEX recognises the
visible equivalent of a control function in a keystore or
system record. The visible equivalent of a control function is
a. single quote followed by the appropriate alphabetic
character, for example and p has the visible equivalent
'D. Visible equivalents are extensively used in LEX
programming. :

Note that the visible equivalent of a control function
ALWAYS has the meaning described in Appendix B. Thus '»
will always be interpreted by LEX as ‘delete character’ even
if the and o combination input by the operator has been
mapped onto some other internal function or even disabled by
tailoring of the *vpurorM system record.

ESCAPE SEQUENCES

The phrase ‘escape sequence’ is used to describe the series of
options actioned by entering a sequence of characters in turn
starting with (ESc). For example followed by * and E
would be shown as (ESC)*e.

Appendix C lists the many sequences available. Whenever
possible they are described in ascending alphanumeric order
but where nonalphanumeric characters are used these are
grouped together in logical order depending on function. For
example all cut and paste sequences are grouped together.

T.9A.3011/85

" Chapter 1. [Introduction

1.4

1.5

-

T.9A.3011/85 1-

Like control functions, .escape sequences work in document
edit mode and in the 'playground. Some also work at the
various system prompts. The only escape sequences to work
from a menu are (Esc)E and (Esc)z which take LEX to the
previous menu in the stack.

Again as with control functions they too may be used in LEX
programming. A $ is used as the ¥iSiBle gquivalefitiof SO
that (Esc)*E for example, would be represented by $*¥eJ In this
way escape sequences can be actioned from keystores and
records.

THE LEX DATABASE

LEX combines the functions of a word processor, database
and calculator into one integrated system. The database
features include accessing other LEX databases, list processing
and mail merge. Database files consist of records containing
the data, each with its own unique key.

CUSTOMISING AND TAILORING LEX

LEX may be customised to suit a particular requirement. In
fact entire systems may be written in LEX. All system
definitions are held as system records in the LEX database -
the VMF. Therefore the menu options can be changed,
keyboard layouts redesigned, printer details re-specified and
the prompt and error messages altered.

By making use of these facilities, standard or repetitive tasks
may be included as a menu option and reduced to a single
key depression. LEX applications systems include personnel
and recruitment . record systems, conveyancing Ssystems,
training timetables, sales and stock control recording,
insurance claims, car fleet maintenance and travel cost
control. ’

LEX is not only capable of being customised to suit a
particular application, but is equally adaptable for languages
other than English. Where examples are given in this manual
the system described represents the standard version as issued
by Ace Microsystems Limited for use in English speaking
countries. LEX, when issued by other suppliers, may already
be tailored to suit particular requirements and in such cases
queries should be directed to the supplier rather than to Ace
Microsystems Limited.

(VS)]

LEX Technical Manual

1.6

1-4

THE MANUAL

This manual starts by giving background information on the
structure of LEX, the files it uses and how to get it working.

That is followed by a section covering the configuration of a
system,.for a specific machine and interfacing it with VDUs
and printers. That section also covers the prompts, messages
and features which control the overall operation of LEX.

The next section describes how LEX can be customised to an
end user’s requirements and therefore provide him with his
own individual system. It includes chapters on programming
LEX and use of the database, list processing and mail merge.

'The final section is a reference section with a complete list of

LEX commands, options, error messages and other tables of
information.

T.9A.3011/85

LEX Technical Manual

Chapter 2. LEX File Structure

2.1

CHAPTER 2. LEX FILE STRUCTURE

A LEX system for any combination of machine and operating
system consists of six fundamental parts, each normally in its
own file with its own identifying extension name. These files
are as follows and their functions are described in the
remainder of this chapter.

The Start-up Module

A file recognised by the operating
system as an executable program,
this file loads LEX.

The run-time system providing the
links between LEX and the
operating system.

The Run-time System

This contains the program which
performs the various LEX
operations.

The Work File - LEX uses a work file for storage of
' temporary information.

The Virtual Memory The VMF is LEX’s database which

File may be tailored by the user to suit
individual requirements. It contains
data records and control information
including menus, screen formats,
messages and record layouts.

Documents - Letters, reports, memos, and other
user created information are stored
as documents. There can be any
number .of these. Each document
consists of an ASCII file which
conforms to the standard for the
operating system being used.

The LEX Code

THE START-UP MODULE

The start-up module is written specifically for each operating
system that LEX runs on. It is responsible for loading the
run-time system, and some of the actual LEX code. On
completion it passes control to the loaded code and LEX itself
starts to run. In some cases, the start-up module and the

.run-time system are held together in one file rather than as

two separate files.

T.9A.3011/85 2-1

{

"~

LEX Technical Manual

2.2

2.3

2-2

THE RUN-TIME SYSTEM

The run-time system (RTS) resides in memory and provides
an interface between the LEX code and the operating system.
During the course of its execution LEX makes requests on the
operating system for particular actions such as reading
information from a disk, obtaining input from the operator’s
terminal, sending output for printing, etc. Each operating
system requires a particular structure for these requests and so
the LEX code makes such requests via the RTS and not
directly to the operating system. The RTS converts the
requests into a form required by the operating system and also
converts any information returned by the operating system
into a form required by the LEX code.

For many implementations of LEX the LEX code is not held
entirely in memory. For these implementations a region of
memory known as the ‘page pool’ is obtained and discrete
portions of the LEX code called ‘pages’ are brought into the
page pool for execution as they are required. The RTS for
these implementations contains the- necessary routines to
manage the page pool.

For some systems optional variants of the RTS are available.
For example on the PDP-11 there are versions of the RTS
which use different maths packages. One version uses a
decimal maths package where numbers used by the LEX
calculator are held as 32-bit signed integers with an additional
byte used to hold the number of decimal places. An optional
version uses the standard DEC 4-word floating point format.
The latter provides a larger number range than the former but
is slower in operation and, because the RTS is larger and thus -
reduces the amount of memory available for the page pool,
requires more disc accesses to refresh the page pool which
again causes a slowing down in operating speed.

On some multi-user systems there is also the possibility of
there being two variants of the RTS; one where a single copy
of the RTS is shared by all LEX users on the system, the
other where each user has his own copy of the RTS loaded in
his own job space. '

THE LEX CODE

LEX is written in a decision table language, Filetab-D. The
same source code is used to produce executable code for any
given computer system for which LEX has been implemented.
The compiler is instructed to generate executable machine

T.0A.3011/85

N

Chapter 2. LEX File Structure

2.4

code for a given processor chip via ‘code generation tables’
one of which has been prepared for all processors for which a
LEX implementation has been produced.

By providing the interface of the RTS between LEX and the
operating system, the LEX program source is independent of
the operating system, which enables one common source
version of LEX to be used for all machines.

This means that, as far as the user is concerned, LEX
operates in an identical manner on all machines. :

The output of the compiler is the LEX code file. By
convention this file is given a name of the form:

LEXnnn.Dmm

where nnn identifies the version number of LEX and mm
depends on the machine type on which this file is intended to
be used, for example .p11 for the PDP-11, .p86 for the 8086
chip, etc.

THE WORK FILE

LEX uses a work file to hold information about the current
document being processed, the current status of LEX and the
contents of certain user-accessible buffers.

There are two types of work file; temporary and permanent.

Permanent work files are given a unique name by the user
and allow an editing session to be interrupted and resumed at
the point where it was left off. The name of the document
being edited, cut and paste buffers, rulers, keystores and
calculator memories are all retained.

If no permanent work file is specified LEX will create and
use a temporary work file, whose name is unique and is based
on the time, or on systems without a time facility a sequential
number is allocated. On exiting from LEX a temporary work
file is deleted.

Chapter 4 outlines how the type of work file may be selected
and how a default file name may be defined. Note however
that, on multi-user LEX systems, it is essential that each user
has a unique work file. If more than one user is using the
same work file DISASTROUS RESULTS WILL OCCUR.

Work files should be a minimum of 128 512-bytes blocks in
size but should preferably be as large as possible so as to hold
a copy of the entire document being edited. As a guide a
work file should be twice as large as the largest document

T.9A.3011/85 2-3

LEX Technical Manual

2.5

2-4

which will be edited with an additional 70 blocks added for
work areas. The work file size is set in the **INST system
record as described in Chapter 5.

During editing LEX uses an in-memory buffer which will
hold a number of screenfuls of text from the document being
edited.” As editing proceeds and the user moves further
through the document, text is removed from the start of the
in-memory buffer and is written to the work file.

Provided that the work file is large enough, it is possible to
scroll backwards and forwards through an entire document.
If the size of work file is too small to hold the complete
document being edited the work file will become full at some
point during editing. At this point text from the start of the
document is removed from the work file and written away to
a temporary file. Scrolling back is then limited to the first
line of text from the document which is still contained on the
work file.

To return to the start of the document it is necessary to
perform a ‘re-edit’ operation, that is to end the current edit,
thus causing the edited copy of the document to be written
out as an ASCII file and re-commence editing from the first
line of the document.

Note that, when a work file becomes full it is not possible to
insert lines within the remaining text of the document being
edited.

A work file may be initialised using menu switch option /2.
This clears all buffers on the work file, clears calculator
stores, clears abbreviations, clears the document name etc. It
is also possible to switch to a different work file using menu
switch option /Z.

THE VIRTUAL MEMORY FILE

The Virtual Memory File (VMF) is the LEX database. It
contains any data records created by the user, such as names
and addresses, and also provides the LEX prompts and control
information. Such prompts and control information can be
tailored by the wuser to suit his requirements, including
modifying menus, error messages, forms, output formats, and
programming instructions. Further, LEX 1is customised for
individual terminals and printers by creating or amending
records in the VMF.

Any number of VMF files may exist on a system and the user
may switch from one to another as required. They are

T.9A.3011/85

)

Chapter 2. LEX File Structure

2.5.1

normally identified by the extension .vMf, although any valid
filename may be used.

Structure of the YMF

The VMF is a particular form of a type of indexed file
supported by the Filetab-D language known as a database file.
The file contains an index based on alphanumeric keys which
are held in ascending ASCII-Lexicographic order within the
index. Each index entry points to a chain of data records
which are stored elsewhere on the file. The chain of records
is manipulated by LEX and presented to the user as a single
logical record for example a complete screenful of text in a
form.

LEX contains a handler for the YMF. Physmal access to the
VMF by the handler uses a 512-byte unit of transfer known
as a block. The VMF is thus divided into a number of
512-byte blocks of which the first on the file is numbered 0
(zero).

The VMF is log1ca11y divided into four sections:

Header block Block 0

Top-level index block(s) Start in block 1

Second-level index blocks Start after top-level index
block(s)

Data blocks Start after second-level index
blocks

With the exception of the header block, every block on the
VMF has a block occupancy byte (BOB) as its first byte.

The header block contains the VYMF structure mark number
and information about the number of blocks used for the
second-level 1ndex

The top-level index (TLI) which starts in block 1 consists of
an ordered set of key values, each key value being the highest
key value which will be found in the second-level index
block whose block number on the file corresponds to the
position of the key in the TLI.

The first byte of each TLI block (BOB) has the value 255
decimal and the last byte is a continuation marker indicating
whether or not this particular TLI block is the last one. The
remaining 510 bytes contain the key values.

The number of TLI blocks depends on the number of
second-level index blocks present. This is set when the VMF
is initialised by the YVMF reorganise function in LEX.

T.9A.3011/85 | 2-5

LEX Technical Manual

2-6

The key size on the VMF is ten bytes. Each TLI block can
hold 51 keys. The number of blocks required for the TLI is
thus:
Number of second-level index blocks
51

If the number of TLI blocks is 1 or 2 then, when LEX first
opens the file, the whole of the TLI is read into memory and
1s held there until the VMF is closed. For a VMF with more
than 2 TLI blocks a 2-block memory buffer is used and
portions of the TLI need to be read into memory during
operations on the file. LEX makes use of an additional level
of index held in memory in such cases to speed up the index
search. Note that the TLI is never altered on a VMF except
when a new TLI is built when a VMF is reorganised.

The second-level index (2LI) starts in the block which follows
the last TLI block. The first byte in each 2LI block (BOB)
has the value 255 decimal. The second byte is used when the
VMF is opened in multi-user mode and the 2LI block is
about to be split into a home and overflow block. In these
circumstances the VMF handler in LEX sets the second byte
to a value which indicates that the complete 2LI block is
locked against access by other users. The byte is reset to its
normal value when the splitting operation is complete.

The next 4 bytes in the 2LI block consists of 2 16-bit integer
values which are chain block pointers, the first points to the
the next 2LI block in sequence the second points to the
previous 2LI block in sequence.

The body of each 2LI block consists of 36 14-byte Index
Entries which consist of: a 10-byte key, a 3-byte data record
pointer and a single flag byte. The number of 2LI blocks
required 1is: ‘

Number of Keys
36

where Number of Keys is specified when the VMF is
initialised by a LEX VMF re-organise operation.

The 3-byte pointer part of the Index Entry consists of a
16-bit byte-swapped integer specifying a block number and
an 8-bit integer which specifies a position within a block.
The pointer in the index entry points to the last record in the
chain of data records associated with that index entry. One
of the bits in the flag byte is used to mark a deleted index
entry. The remaining seven bits in the flag byte are reserved
for future use.

T.9A.3011/85

Chapter 2. LEX File Structure

When a VMF is initialised at the start of a re-organise
operation by LEX each 2LI block is initially filled with ‘High
Key’ values, that is each index entry is set to 14 bytes all
having the value 255 decimal. The re-organise will insert
index entries into approximately half of the space available in
each 2LI block.

Following the 2LI blocks on the VMF are data blocks which
contain the chains of records associated with each index
entry. Some blocks in this area of the file may also contain
overflow 2LI index blocks. Overflow of keys is described
later.

The first byte in each data block (BOB) indicates the next
available position in the block where new data may be
inserted. A completely empty data block has a BOB value of
1. The actual insert position in the block is given by the BOB
value times 2 plus 1. The first data record in a block will
therefore start at byte 3, with byte 0 being the BOB and bytes
2 and 3 never being used

Within each data block each record consists of a 3-byte
forward pointer to the next record in the chain. This pointer
has a similar structure to the 3-byte pointer in the index
entry. This is followed by a 1-byte record length which is
followed by the actual contents of the data record. The
theoretical maximum length ‘of data in a data record is 255
bytes, however LEX imposes a smaller maximum than this to
achieve more efficient packing and to improve speed of
execution.

Each record in a data block is complete and does not span
block boundaries. There will usually be a small number of
unused bytes at the end of every data block.

In general the contents of data records are actual ASCII
characters except that, when a record contains a number of
consecutive blanks, these are converted into a single
‘squashed’ character in the record. Storage of ‘squashed’
characters is achieved using the ‘low value ASCII’ characters -
with a value in the range 1 to 31 decimal - below the value
used for the space character. Thus a ‘squashed’ character of
value 5 will represent 5 consecutive blanks. Where a record
contains more than 31 consecutive blanks multiple ‘squashed’
characters are used to represent them. Thus 73 consecutive
blanks in a record will be stored as 3 ‘squashed’ characters of
value 31, 31 and 11.

T.9A.3011/85 2-7

LEX Technical Manual

2.5.2

2-8

When a data record 1s recalled by LEX any °‘squashed’
characters are unsquashed 1nto the appropriate number of
blanks. In fact the default character used for unsquashing is
the underline character as this usually represents unused space
in a form in LEX. With data records it is possible to specify
the value of the character, strings of which are to be squashed
on writing to the VMF or which character i1s to be used when
’squashed’ characters are unsquashed on reading from the
VMEF. System records however MUST used underline as the
squash character.

Note that LEX represents physical characters in a
data record using NULL (value zero) characters in the record
on the YMF, this is so that the standard ASCII character for
(which is 13 decimal) may be used as a ‘squash’
character.

The Structure of the Keys

Each key comprises ten characters. If fewer than ten
characters are entered, then LEX will pad the key with space
characters.

The first character of the key is used to identify the record
type; any character may be chosen except the square bracket
characters (and 1. For some records the second character of
the key is used as an extension to the record type. LEX uses
the following types of record internally so user defined
records should avoid them.

T.9A.3011/85

J

Chapter 2. LEX File Structure

2.5.3

TABLE 2.5 - Special Record Types

Record Purpose Short Title
Type

*k System CONTROL record ** Record

) VDU Record 1 (Main) YDUFORM
")) - 2 (More sequences) YDUFORM?2
)= 3 (Screen attributes) YVDUFORM3
); 4 (Function set ups) VDUFORMA4
*) VDU Character conversion table YDUTABLE
*$ Printer record 1 (Main) PRTFORM
*% - 2 (Attributes) PRTFORM?2
*1 Printer petal conversion table PETFORM

$(Petal functions PETFUN

*. Proportional spacing -

*, Document extension details PAPER

* Masking format MASKFORM
*= Spelling system -

*- . Error messages ‘ ERRORFORM
: Document index record

* General system record System record

Multi User VMF

LEX may be directed to open the VMF in either single-user
or multi-user mode. Multi-user mode is only available if the
operating system under which LEX is running provides
single-block locking. This means that the operating system
will prevent the reading of a block on the file if that block
has been locked (usually by being read) by another user.
Provided that thé operating system can support this basic
requirement the VMF handler in LEX is able to provide true
multi-access to a single VMF.

If a VMF is opened in multi-user mode the handler sets a
lock bit in the index entry for a particular key when one of
the users accessing the file performs the necessary ‘Read with
Lock’ function within LEX.

A chain of records so locked may then only be updated by
the user who set the lock, other users are only allowed to read
the chain and are given a warning if they attempt to update
it.

In order to invoke operating system block locking it is usually
necessary to open the VMF in a special mode. If the file has
already been opened by another user, some operating systems

T.OA.3011/85 2-9

()

LEX Technical Manual

2-10

will not allow a file to be opened at all unless the current
attempt to open the file specifies an opening mode which is
identical to the mode used when the file was previously
opened by the other user.

For example under the RSTS operating system on the PDP-11
a file 'may be opened MODE 0 (normal mode) or MODE 1
(update mode). MODE 1 invokes block locking by the
operating system. If a file has already been opened in MODE
0 an attempt to open it in MODE 1 will fail and vice-versa.
Also if a file is opened in MODE 0 by more than one user
only the first user to so open the file will be allowed to
perform write transfers to the file by RSTS.

LEX can be set up .to open the VMF either in single' or
multi-user mode. Multi-user mode allows more than one user
to have controlled access to the database and is useful when a
number of users require read/write access to common data,
for example customer names and addresses, stock records, etc.
LEX will ensure that any updates to the file are correctly and
unambiguously performed. It should. be noted however that
operating in multi-user mode of necessity significantly
increases the number of disc transfers which the handler must
make to and from the VMF which will cause slower operation
of LEX.

If LEX is being used on a multi-terminal computer system
and some VMFs are open in single user mode with other
VMFs open in multi-user mode there can be problems when a
given LEX wuser requires to access a secondary VMF, for
example as a foreign file in list processing or for the purposes
of copying records to or from the secondary VMF. This is
because the secondary YVMF may have been already opened
by some other user in @ mode which conflicts with the mode
in which LEX requires to open it.

For foreign file access in the List Processor the user is able to
control the mode in which the foreign file is to be opened.
For VMF to VMF copying LEX will attempt to open the
secondary YMF using whatever mode was used to open the
main VMF. If the operating system refuses to open the file
due to a mode conflict an error message is displayed.

If possible it is best if a multi-terminal system is set up so
that the installation is all multi-user or all single user as far as
LEX is concerned; that is all opens of VMFs by LEX will be
either MODE 0 or MODE 1 and never MODE 0 by one user
and MODE 1 by another.

T.9A.3011/85

Chapter 2. LEX File Structure

254

Note that the VMF handler in LEX assumes that, if a file is
opened in MODE 0 only one user will be attempting to write
to the VMF. Some operating systems will not prevent write
transfers from more than one user if the VMF is opened
MODE 0. However it should be stressed that this practice is
very likely to lead to corruption of the VMF.

Reading Records from the VMF

When LEX is required to read a record from the VMF it first
searches the top-level index to determine which second-level
index block will contain the required key, assuming that the
key actually exists in the index. The appropriate second-level
index block is read into memory if necessary. A read of the
index block will be necessary unless the VMF is opened for
single user access and the index block is currently in memory.

The contents of the index block are serially searched for a
match with the required key. The search will terminate if a
match for the key is found or if a key with a higher value
than the required key is encountered. Note that, in the case
of a matching index entry being found, the flag byte in the
index entry is tested to ensure that the entry does not
represent a deleted key.

If no equal or higher key is found but the last entry currently
in the index block is less than the required key this means
that key overflow has occured. The block chain pointer at
the start of the index block is used to- retrieve the overflow
index block and this block is searched in a similar manner.
Note that the overflow block may itself have an overflow
block which may itself have an overflow block and so on. If
no equal key is found in the main.or overflow index block(s)
then the required key does not exist.

Once the index entry for the required key has been located
the 3-byte pointer part of the index entry is used to read the
relevant data block which contains the last record in the chain
of records associated with the given key. If there is more
than one record in the chain the forward pointer at the start
of the record in the data block will point to the first record
in the chain.

The first record is retrieved and the forward pointer chain
followed to read any subsequent records in the chain until the
‘end of chain’ record has been read. Unless all records in the
chain occupy the same data block on disc this process will
require further disc transfers. The chain of records Is

T.9A.3011/85 2-11

LEX Technical Manual

2.5.5

2-12

concatenated into one long logical record in memory and, if
necessary, ‘squashed’ characters are expanded before the
complete logical record is presented to the user.

Creating New Records on the YMF

LEX is required to create a new record on the VMF either
when the create command is used or when the update
command is used and no record with the given key is
currently present on the VMF. In either case the VMF index
is searched and the position in the index noted for the new
key for the record about to be written to the file.

If there is no free space on the VMF LEX will not attempt to
write to the file, instead issuing a to the terminal.

If there is free space on the file the logical record to be
written is first processed in memory to convert strings of
‘squashable’ characters into their °‘squashed’ representation.
The transformed record is then divided up into the physical
record units which will be written as a chain of records to the
file. LEX imposes a maximum length of 124 bytes for each
physical record written. LEX also ensures that certain
consecutive bytes are always contained together in the same
record, for example the visible equivalent of a control
function, single quote followed by one of A-Z. If the
division of the logical record into physical records would
cause the quote to be at the end of one record and the
following letter character to be at the start of the next, the
length of the first record is reduced by one to make the quote
become the first byte in the second record.

LEX keeps a note of which data block is currently accepting
data. This block is retrieved and its BOB examined to see if
the block has sufficient remaining free space to hold the first
record in the chain about to be written. If not the file is
searched from the next higher block number onwards to find
a data block with a suitably low BOB value. The first record
in the chain is inserted into the next free position in the data
block, preceded by a forward pointer and a record length
byte. For the first record in the chain the forward pointer
will initially point to itself. The BOB value in the data block
is updated to point beyond the record just inserted.

At this point the index is updated. The key value is inserted
in the correct place in sequence in the index and the 3-byte
pointer part of the index entry set to point to the record just
inserted. When inserting the index entry any entries in the

T.9A.3011/85

Chapter 2. LEX File Structure

same index block with key values higher than the inserted
value are moved to create space for the inserted entry and to
preserve the sorted sequence in the index block. If the insert
point is currently occupied by a deleted key the deleted key
entry is overwritten by the new entry. Insertion of the new
index entry may create an overflow index block as described
below.

If the logical record being written consists of only one
physical record this completes the creation process. Where the
logical record requires a chain of physical records the
remaining records in the chain are written to the file in a
similar manner. If possible each succeeding record in the
chain will occupy the same data block as the preceding record
in the chain. When there is insufficient free space in a data
block to accept the whole of the next record in the chain
about to be written LEX searches further up the file for a
data block with a sufficiently low BOB value.

During writing of the chain of records the forward pointers
which are at the start of each record in the chain are
adjusted, as is the pointer in the index entry. When the
complete chain has been written, the pointer in the index
entry will point to the last record in the chain, the forward
pointer for the last record in the chain will point to the first
record in the chain, the forward pointer for the first record
in the chain will point to the second record in the chain and
SO On.

Normally each 2LI block has at least one unused high key
value index entry at its end. If insertion of the new entry
causes this last high key entry to be overwritten or ’shunted’
off the end of the index block then the index block is full
and LEX will create an overflow index block as follows:

LEX finds the next available completely empty data block on
the VMF and alters the BOB value from 1 to 255 to mark it
as being completely full. This data block will now be made
into an overflow index block. Index entries from the upper
half of the just-filled 2LI block are written into the lower
half of this data block and the remainder of the block filled
with high key values. The upper half of the just-filled 2LI
block is filled with high key values. The chain block pointers
in the 2LI block and the overflow index block are set up so
that the forward pointer in the 2LI block points to the
overflow block, the backward pointer in the overflow block
points to the 2LI block and the forward pointer 1in the
overflow block points where the forward pointer in the 2LI
block used to point.

T.9A.3011/85 2-13

LEX Technical Manual

2.5.7

2.5.8

2-14

When index block splitting occurs the index is said to have
gone into overflow. Note that index overflow can occur even
if the index as a whole is far from full if a number of new
records are created each with a similar key value.

Updating Records on the VMF

When an update of an existing record is required LEX first
squashes the logical record in memory into its storage format.
The logical record currently on file exists as a chain of
physical records. The data content of each record in the
chain currently on file is replaced by new data from the new
logical record. ' If the new logical record is shorter than the
existing logical record the length of the last record in the
chain will need to made shorter If the new record is
considerably shorter some of the existing records at the end
of the chain will not be overwritten but will remain on file
occupying space which will be recovered by a VMF
reorganise.

If the new logical record is longer than the existing record
one or more new physical records will be created at the end
of the chain to hold the end of the data. These new records
will be written into previously empty space in data blocks.

Record Deletion

When a logical record is deleted on the VMF the action of the
handler is actually only to mark the index entry to indicate a
deleted key. This is done by setting the delete bit in the flag
byte in the index entry. The 3-byte pointer in the index
entry is left unaltered and the chain of data records associated
with the key is left on file. This makes it possible to restore
a deleted record simply by resetting the deleted bit in the flag
byte. Note however that the index entry for a deleted key
may sometimes be re-used for a newly inserted key if the
new key requires to occupy the position of the deleted key in
the index. When a VMF re-organise is performed any deleted
keys and their associated chains of data records are not
transferred to the re-organised file.

Record Locking

In a Multi User VMF where a number of users may have
read/write access to the VMF at the same time it is important
to ensure that only one user can update a record at a time.

T.9A.3011/85

Chapter 2. LEX File Structure

This is achieved by locking the record prior to updating it.

If a record is read in the ordinary way without locking, it is
possible for a second user to read the record and perhaps
update it without the first user realising that it has changed.
Reading and locking the record guarantees that the second
user will be given a ‘read only access’ warning when he
subsequently reads it.

Once a record has been locked it remains locked until it is
updated, another record is read or the user returns to a menu.

Because the Document Index in LEX consists of records on
the VMF it is possible that the Document Index record for a
given document may be locked by another user when the
current user attempts to edit or view the document. If so the
following error message (taken from the **TExT system record)
1s displayed:

LEX allows the user to continue with the view or edit but the
Document Index record will not. be updated on completion.
As a general rule a user should refrain from operating on
documents whose Document Index record has been locked by
another user as he 1s likely to be viewing or editing a
document which another user may well be in the process of
altering.

LEX implements locking on the VMF by setting a bit in the
3-byte pointer portion of the index entry for a given key.
The first 2 bytes of this pointer comprise a byte-swapped
16-bit integer which is the (block number plus 1) of the data
block on the VMF which holds the end of chain record
associated with the given key. The sign bit of this integer is
normally zero but "when set indicates that a lock has been set
for the given key.

As well as the above type of lock LEX may also set a lock on
a complete second-level index block. This will occur when
LEX is about to split the block and create an overflow block.
Until this operation is complete other users must be prevented
from accessing the index block and possibly modifying it.
The second byte of the 2LI block, which normally has the
value 0 or 255 decimal is set to the value 1 to indicate that
the block is locked. Should other users attempt to read the
block whilst the lock is set the handler will perform a
sleep-retry loop until the lock byte has been reset to its
normal value (when the split into overflow operation has been
completed).

T.9A.3011/85 2-15

LEX Technical Manual

259

2-16

Because LEX sets locks by modifying bits and bytes on the
VMEF it follows that an abnormal termination of LEX, for
example a system crash, may leave the VMF with some lock
bits or index block lock bytes set in the locked state. Menu
switch option /0 is provided to enable all such locks to be
cleared. When running LEX to clear locks on a VMF the
user should ensure that no other user has the VMF file open
at the same time. This is best ensured by having the VMF
open in single user mode whilst the lock clearing operation is
performed.

Reorganising the YMF

From time to time it becomes necessary to reorganise the
structure of the VMF file. This is achieved by menu switch

- option /3 and is described in Appendix A. These are two

types of reorganisation. The type chosen depending on which
of the following caused the need for a reorganisation.

1. As new records are added to the file so the data area
may become full. A manual reorganisation 1is then
necessary to extend the file data area for future use.

2. A large number of new records created in one area of
the index may cause the index to go into overflow.
Performance may suffer because of the extra disk reads
that this entails even if there is still a lot of room in the
index and data area. Normally an automatic
reorganisation will retrieve the situation.

3. Even when no new records are added to the file it is still
possible for the file to become full if a large amount of
unused space accumulates in the data file. Such space is
created when records are updated and extended since
space occupied by the old, smaller record is not re-used.
An automatic reorganisation will again normally suffice
in these circumstances.

It is usual to find some combination of the above to cause the
need for reorganisation. Generally, an automatic
reorganisation is sufficient unless this does not provide
enough free space for future usage. However the automatic
reorganisation is built for speed rather than efficiency so an
occasional manual reorganisation is useful to reformat the
records more compactly. :

The effects of a reorganisation are as follows. The top-level
index is re-created based on the actual current distribution of
key values on the file. Any deleted keys and their

T.9A.3011/85

Chapter 2. LEX File Structure

corresponding data records are not carried over onto the
reorganised file and space occupied by unused portions of
data records is recovered. The second-level index blocks are
re-built only partially full which leaves room for a significant
number of subsequent insertions without index overflow
occurring. All the chains of records which form each logical
record are written into a physically contiguous region of the
file which minimises disk head movement required when the
records are subsequently retrieved.

Because the index blocks are re-built only partlally full and
also because of the different packing of records into data
blocks which occurs on reorganising there may be occasions
when the reorganised file will need to be somewhat larger
than the original file if it is to contain the same amount of
free space.

2.6 DOCUMENTS

Documents contain letters, documents, and other work. There
can be any number of them within the limits of disk storage
available. -

2.6.1 File Structure

Documents are ASCII files and so may be processed by other
editors or operating system utilities.

LEX supports character attributes allowing up to five
attributes to be associated with each character in a document.
When a line of text in a document contains at least one
character which has one or more associated attributes then the
line of text is written to the ASCII file as two lines. The first
line i1s the set of ASCII characters which form the line of text
except that a special character is added to the end of the line
in the ASCII file, immediately prior to the line terminating
character(s) if these are present.

This special character is defined in the **MoNT system record
and usually has the value 255 decimal which means that it
will not normally be treated as a printing character by
operating system utilities. The presence of this special
character indicates to LEX that the next line of text on the
ASCII file should be interpreted as the visible representation
of character attributes associated with characters in the line
ending with the special character.

T.9A.3011/85 , 2-17

LEX Technical Manual

2.6.2

The attributes-defining line which follows consists of space
characters and characters which are the visible representation
of attributes. If the file is printed using an operating system
utility each wvisible attribute character will appear directly
under the character on the line above to which the attribute(s)
apply. A table showing the characters used to represent
attributes, together with some examples is given in Appendix
1.

Document Naming Conventions

LEX documents exist as standard ASCII files in the file
structure of the operating system being used. The name given
to a document when it is originally created using LEX must
therefore conform to the rules governing file names imposed
by the operating system concerned. In addition there are
some constraints applicable to file names over and above those
imposed by the operating system of which the LEX user
should be aware and it is these aspects which are covered
here. -

A document name can be up to 40 characters in length
although not all operating systems will support names of this
length.

a. Device/Account Details

An option i1n **INST allows LEX to be restricted to accessing
documents in the users directory/account. Alternatively the
device/account or directory can be allowed to appear
whenever a document name is requested. e.g.

2-18

In the latter mode LEX places the cursor immediately after
the device/directory specification but the user may move the
cursor back and change or delete these details. The ability
for a user to access a particular device/account/directory may
depend on permission settings in the operating system.

The characters used by LEX as the device/account delimiters
may be patched to suit an operating system as discussed under
configuring a LEX system in Chapter 4.

T.9A.3011/85

Chapter 2. LEX File Structure

b. Body of the Name

The body of the document name follows the device/account
details and 1s terminated by a . (dot). The maximum length
of the name 1s dependent on the operating system but note
that the key to a Document Index record which LEX
constructs from the document name will use only the first six
name characters specified by the user. To avoid possible
duplication in Document Index keys it 1is therefore
‘recommended that no more than six characters be used for
the body of the document name.

Any printable characters may be used in the document name
except those defined as device/account delimiters. Normally
these include

/()L <>3%1 %3 #:

Some operating systems treat upper and lower case case
alphabetic characters in filenames synonymously, that is the
names FRED, fred and Fred would be considered to be
identical. Other operating systems allow mixed case and
would consider FRED and fred to be different. LEX
automatically translates input document filenames into upper
case unless the case switch in the **INsT system record is set to
L (when translation to lower case is performed) or M (mixed
case) when no translation takes place.

Mixed case is not recommended as the user must remember
the exact case used when a document name was originally
entered if the document is to be viewed or edited. Mixed
case is used for example for Arabic users where the alphabet
contains more than 26 characters, some of which are
accommodated using ASCII codes normally used for lower
case letters. In these circumstances no case conversion ever
takes place.

Note that for the LEX Document Index key, which uses the
first six characters of the document name in its construction,
the name characters used are translated into upper case in the
key as per *CASEFORM.

c. The Extension

The document filename extension follows the . (dot) at the
end of the body of the name. The maximum number of
characters in the extension is dependent on the operating
system but it is strongly recommended that a maximum of
three characters be used. This is because LEX uses the
extension to define the class of documents to which a

T.9A.3011/85 2-19

LEX Technical Manual

2.7

2-20

common set of rulers, keystores and printing details are
applicable and expects the extension not to exceed three
characters. Also only the first three characters of the
extension are used in the construction of a key for the LEX
Document Index and, by restricting the extension to three
characters ambiguities may be avoided.

If the input document name does not contain a . (dot) then
LEX appends the default extension defined in the **INST
system record (see Chapter 5). It is possible to specify a
filename with a blank extension by including the dot as the
last input character in the filename with no following
characters. On UNIX systems the dot is suppressed by LEX
in these circumstances before the filename is presented to the
operating system.

It is possible to direct LEX to apply the parameters normally
associated with a given document filename extension to a
document with a different filename extension by appending
/*.aaa to the end of the input document name, where aaa is
the extension whose associated parameters are to be used.

PLAYGROUND

Playground is not strictly a document. It refers to the
operation of LEX in edit mode but with no document directly
accessed. All input enters the workfile and it may be
processed as normal including being scrolled off and on the
screen. It is not subsequently stored as a file and is therefore
lost on returning to a menu.

On entering the playground the document extension implied is
.080, .132 etc. where the number is taken from the width of
the YDU as defined in ‘the current YDU record.

T.9A.3011/85

LEX Technical Manual

Chapter 3. Installation and Start Up

3.1

T.9A.3011/85

Chapter 3. INSTALLATION, SERIALISATION & START
Up

The process of getting LEX running for the first time consists
of copying the appropriate files from the issued distribution
kit, serialising the copy onto the machine in question and
finally going through the LEX start up procedure. This
chapter describes the procedure in general terms and should
be read in conjunction with the installation notes provided for
a particular computer.

Once LEX is operating in this initial form Chapter 4 should
be consulted to make the start up process a simple operation
for end users. LEX is then in a state to be configured,
customised, tailored or used.

LEX is licenced to run on one machine only. Therefore until
the serialisation procedure has been performed it operates as a
demonstration package. The limitations of LEX in its
demonstration mode are outlined in this chapter along with
the technique to make the package ‘live’.

INSTALLING LEX

A typical LEX distribution- kit contains the following files.
Note that the extension wﬂl vary depending on the operating
systems used.

READ .ME

LEX9A .EXE

LEX9A1.D86
LEX9A .VMF

D .EXE
LXSERL.D86
LXSERL.LIT
LXINST.D86
LXCONV.D86
LXCASC.D86

The first file is textual information which should be read
before attempting to install a system. Release notes, the latest
patchmg information and an installation guide may be issued
in this way.

Next comes LEX itself. It consists of a VMF file plus from
one to three other files depending on the computer to be
used. The function of each of these files is described in
Chapter 2. Note that their names all take the form

LEXnnn.aaa

W
!
[

LEX Technical Manual

3.2

- 3.2.1

3-2

where nnn is the version of LEX, in this case Version 9A.1,
whilst the extension describes the purpose of the file.

These are the files that must be copied into the
account/directory where LEX 1s to run.

On PDP-11 versions where the operating system supports
floating point maths, both floating point and decimal versions
of the run-time system (RTS) may be provided. The decimal
version is normally used and it gives calculator precision to 10
digits. The floating point version is accurate to 16 digits but
this must be traded against its slower speed. The decimal
RTS file is named Lexnnn.RTs and the floating point version
LEXxnnn.RTF. LEX always uses the file LEXnnn.RTS as its runtime
system so to install floating point maths rename that file as
LEXnnn.RTS. :

The final set of files in the distribution kit consists of a
group of programs which perform specific functions when
first setting up LEX. They are run as independent programs
and are described in later sections in this chapter. They
include such functions as the serialising program, a program
to patch start up defaults within LEX and another which

" converts VMFs that were developed for earlier versions of

LEX. The appropriate files must be copied and run where
necessary but may then be destroyed.

START UP PROCEDURE

Selecting the work file

The command used to activate LEX depends on the operating
system. Often it is as simple as:

LEX(RETURN

hapter

Temporary work files selected in LXINST

If temporary work files were selected with LXINST, LEX
creates and opens DEV:HHMMSS.WRK, where QEV;
work file device (see option 7 in LXINST). HHMMSS represents
the time, or on systems without a time facmty a sequential
number 1is allocated AR eI Nk LT AT Y
option 8 in FESEENS

T.9A.3011/85

Chapter 3. Installation, Serialisation and Start Up

Permanent work files selected in LXINST

If permanent work files were selected with LXINST, LEX
attempts to open Dev:LEXSA.WRK. If this file cannot be used for
one of the following reasons:

a) LEX cannot find the filename
b) the file opened is not a valid work file
c) someone else is using the workfile

then LEX asks for the name of a valid work file with the
prompt:

a) specify a permanent work file
b) specify a temporary work file
¢) chain to another program

These options are now considered in turn.

a) Permanent work files

Permanent work files allow the user to continue from the
previous session and to carry over information between
sessions.

If no extension is included in the file name entered in
reply to the prompt then LEX applies the default
extension of .wrRK or other value as set by patching using
LXINST - see Chapter 4. LXINST may also be used to
set the default device.

When LEX opens the work file it checks to see whether it
is invalid or in use by examining the first byte of the file.
If 1in use then a **TEXT warning message

1s displayed “

the that LEX carries on and starts to use the work file.
IT IS EXCEEDINGLY DANGEROUS FOR MORE
THAN ONE USER TO BE IN A WORK FILE. On multi

T.9A.3011/85 3-3

LEX Technical Manual

322

3-4

If LEX was terminated abnormally when the work file
was last used then LEX would have been unable to reset
the first byte. The work file appears to be still in use
when next entering LEX and the above message is again
issued. In such cases it is quite safe to continue as
normal.

If the named work file is valid then LEX uses that file,
restoring the user to where he left the work file. On the
other hand if no file of that name exists then one is
created.

b) Temporary work files

A temporary work file can be stipulated by answering
to the .wrk? prompt. A temporary work file is
then created as described in the section ‘Temporary work
files selected in LXINST’. The option is used when no
specific work file is required as it is automatically deleted
when LEX is exited.

LEX can be patched (Chapter 4) fo suppress the work file
prompt on entry and hence automatically create a

temporary work file as though a was issued as
above.

IR BEnerams.s)
This option does not enter LEX but chains to some
external program. The option is, however, only available

if supported on the operating system in use.

BT TONSR

enters the patch program (see Chapter 4)
chains to the utility filename

Selecting the YDU at Run Time

Whether temporary or permanent files are specified at the

.wrk? prompt, terminating with a leads to VMF
selection below.

Alternatively, if it is terminated with then LEX
prompts:

T

Enter a valid key for a VDU record on the VMF and press
®ETuRN). This key overrides any key already set in the VMF
or stored in the work file.

T.9A.3011/85

Chapter 3. Installation, Serialisation and Start Up

It is a useful technique when the user needs to run the same
LEX system from different types of VDU.

3.2.3 Selecting the YMF

Having selected the work file, LEX now requires a VMF.

If the work file already exists then LEX continues from
where it left off during the last session using the same VMEF.

On the other hand if a new work file has been created,
permanent or temorar / LEX }looks for a defagltf VMF. T‘HéJ
: 5 » e , A Do a’ff"’ﬁd;;mto,f

andsecondary deléé can be defined which LEX searches for
the YMF.

Finally if a VMF cannot be found or the specxfled file does
not have the correct access permission LEX prompts for a
filename.

LEX will keep issuing this prompt until a valid VMF
filename with the correct access is given, or (CIRL)C is entered
to abort the operation.

The VMF will be opened as single or multi user depending on
the value set by LXINST. Once the VMF has been opened
this may be changed if the **InNsT value for single/multi user
contradicts this.

As at the .wrk? prompt the file name may be terminated with
a instead of (RETURN). The effect is exactly as above in
prompting for a vdu?.

The chain sequences (ESC#(RETURN) and (ESC)Sfilename (RETURN)
allowed at the .wrk? prompt may also be used here.

3.2.4 LEX demonstration version

The steps described above complete the LEX start up
procedure and LEX should display the main menu. The
exception is the first time LEX is run on a machine or if it
has not been serialised. In such cases a further stage is
prompted by the message below.

T.9A.3011/85 , 3-5

LEX Technical Manual

3.3

3-6

The serialisation process, automatically started by answering Y
to the above message is described in the next section.

N enters the demonstration version of LEX. The
demonstration version works exactly as a live version W1th the
following restr1ct1ons

Dif

s g

TRAXID 133

SERIALISATION

Serialisation is a one time only operation which converts a
LEX demonstration version into a fully operable live system.
It takes just a few minutes and a telephone call, but must be
carried out with care, ensuring all instructions are followed
exactly.

Note that if major items of hardware are replaced or if the
LEX files are refreshed from the release kit then
serialisation may be required again.

For serialisation to be carried out the serialisation program
and associated text file must be available. These are called
LXSERL.aaa and LXSERL.LIT in the distribution kit.

On running the serialisation option an instruction message
something like the following will appear.

T.9A.3011/85

Chapter 3. Installation, Serialisation and Start Up

.

- The company name may be changed or a simple (RETURN) use
to accept the current wording. The following extra
information is then displayed.
Having noted this information on the form provided (Figure
3.1) telephone the number shown, ask for the Installation
Controller and follow the instructions given.

Yo

Errors will be dealt with by the Controller until, on successful
completion, the following is seen.

LEX is now serialised as a fully working version.

T.9A.3011/85 3-7

LEX Technical Manual

FIGURE 3.1 - Form for Noting Serialisation Details for LEX

3-8 T.9A.3011/85

LEX Technical Manual Chapter 4. Selecting Start Up Options

4.1

4.2

Chapter 4. SELECTING START UP OPTIONS

The first aspect to customising LEX to suit a computer
configuration is to set those factors which cannot be altered
when LEX is running, since they affect the actual start up of
LEX.

Three aspects are considered in this chapter. The first is the
use of an operating systems command file to start up LEX
automatically. This is followed by a section on type ahead
which may be used in command files but is described
separately as it may be used elsewhere. Finally there are a
number of patches which can be made to the LEX programs
which set such factors as the search patterns to find the
location of work files, YMFs, etc. ’

COMMAND FILE

On most computer configurations LEX may be entered
automatically by setting up an appropriate command file in a
format dependent on the operating system in use.

TYPEAHEAD

Depending on the operating vsystem,'typeahead can be used to
preselect the work file, VMF, VDU and to type ahead into
LEX. YVisible equivalents for are used.

In this way statements can be included in a command file to
call LEX, choose the work file, select the YMF and VDU
type and possibly enter a specific document for editing. For
example: ’ '

LEX /WPOF /FPOF /UVT220 //ETEST.LTR\\\//

This will work if E is a menu option, otherwise the following
must be used: :

///ETEST.LTR\\\//

Providing typeahead for work file, YMF and VDU type are
used in this sequence they need only be preceded by one ;.
After these, or if these are required in a different order, two
/ characters precede any true typeahead string.

The typeahead string may contain any valid characters
including visible equivalents. Thus in the example above, the

\ character represents a (RETURN).

T.9A.3011/85 , 4-1

LEX Technical Manual

4.3

4.3.1

4-2

The string is terminated by two s/ characters.

To preselect a VDU, typeahead can also be input from the
keyboard at the .wrk? and .wmf? prompts by pressing (SPACE).
Similarly it may be used at the key prompt
and switching between VMFs using the /F menu switch
option.- ‘

The total length of the type ahead must not exceed 64
characters or the string will be truncated to this length. Any
VMF or VDU specified overrides that which would normally
be used, i.e. the record stored in the work file or specified in
**INST.

If a workfile specified in typeahead does not exist then LEX
creates one without prompting.

PATCHING LEX ENTRY OPTIO}NS

Some options concerning start up may be patched directly into
the LEX files using the installation patch program.

LXINST is the patch program and must have been transferred
from the distribution kit during installation if patching is to
be accomplished.

Note that LEX has an inbuilt patch program accessible by
menu switch option /5. This' is provided mainly for
correcting errors. It can be used for changing these options
but only if the location for the variable is known. As these
vary from release to release it is simpler to use LXINST.

Using the Patch Program

LXINST may be entered in three ways. depending on your
system:

a) On entry into LEX, at the .wrk? or .wmf? reply with
(ESC)#(RETURN)

b) From within LEX, chain to the program with the /G
menu switch option followed by the filename LXINST.D11,
LXINST.D86, LXINST.D&8 Or LXINST.D32

c) From the operating system prompt, use the program
supplied with the distribution kit and the command

D LXINST
See your installation notes for full details.
LXINST starts by asking for the name of the file to be patched.

T.9A.3011/85

Chapter 4. Selecting Start Up Options

The file depends on the version of LEX but usually takes the
form LEXnnn.Dxx where nnn is the release number and xx the
system for which it is derived. See your installation notes for
more details.

IXiNsA shows the following display:

At the prompt which field do you want to change the following
replies may be entered:

Enter the number of the field to be patched. This gives
access to the appropriate field which may then be
updated with the desired values. Note that this only
changes the contents of the table and the file itself is not
actually patched at this stage.

n

Enter * to abandon the patch leaving the settings as
shown on first entering the routine. No patching occurs.

Updates the file to be patched with the values as shown
in the table on display.

Resets the table to the values shown on first entering the
routine. :

The following may also be used:

(DELETE) or (RUBOUT)

BACKSPACE

LINEFEED

T.9A.3011/85

4-3

LEX Technical Manual

4.3.2

4-4

Options to be patched

Most of these options describe the way in which the various
LEX files are opened and where default files can be found.
This is best explained by use of the example cited above
which is for an MS-DOS system.

First LEX notes that the VMF is to be opened in single
user mode.

A temporary work file is not required so LEX looks for
c:LEx9A.WRK. If not found it prompts for the work file
name. Next LEX looks for the VMF file. First it tries
C:LEX9A.VMF E:LEX9A.VMF and if this fails, a prompt for the
YMEF filename is issued.

Once a valid VYMF 1i1s identified LEX checks **INsT for
the multi/single user mode of the VMF. If it differs
from the mode in which it opened LEX then re-opens it
in the correct mode.

If at the above prompts file names are entered without
extensions then the default extensions .wrRK and .vMF, are
appended to the user input file name.

Full descriptions of each patchable field are given below:

If the VMF is to be opened as multi user this switch is set to
M and if to single user to s.

Note that LEX opens in the mode described here but on
entering a VMF checks **InsT to see if the VMF’s mode is the
same. LEX then reopens in the correct mode if necessary.

When set to 1 LEX overrides all other features and opens a
new temporary work file with a unique name. Temporary
work files are automatically deleted on exiting LEX and
therefore cut and paste buffers and other useful stores cannot
be carried over between editing sessions.

In the search pattern for the VMF LEX first tries this device

- and/or directory.

T.9A.3011/85

Chapter 4. Selecting Start Up Options

Having failedv to locate the VMF on the first device it then
checks this one. Only after not finding it here does LEX
prompt for a VMF filename.

In carrying out the search for a default VMF this field
contains the filename extension. At the .vmf? prompt it is also
used as the default extension when one is not included in the
filename entered.

Any work file created, temporary or permanent, will be
located on the device specified here. The search for a work
file 1s also conducted on this device.

If a filename is entered at the .wrk? prompt without an
extension, then the extension specified here is appended.

cannot be used in a file name. These characters may be
changed by patching this location. The standard values will
vary according to the system used but could be:

$O/\OO<1%#

. is also built into LEX but cannot be patched. Care should
be taken not to enter any spaces.

5e g

If, on entering LEX, the start up routine finds that LEX has
not been serialised then the message on these two lines is
displayed. From here the user may enter the serialisation
process (or some other program) by entering. vy or enter. LEX_
for demonstration purposes ‘with a N. The standard message
may be re-defined here if required.

T.0A.3011/85 4-5

LEX Technical Manual

4-6

On some systems a direct chain to the serialisation program
may be achieved. In this case this field contains the name of
the program (LxserL) and, if necessary, the directory in which
it may be found. On systems where the chain is not possible,
this field contains brief instructions on how to execute the
program.

T.9A.3011/85

N

LEX Technical Manual

Chapter 5. System Control Records

Chapter 5. SYSTEM CONTROL RECORDS -

System control records define the basic working system of
LEX.

They are activated on entering a VMF and remain in force
unless a new control record 1is specifically selected. The
ability to change these records allows LEX to be customised
to suit a particular application including translation to foreign

e Teear A S AsTerskE ¢

- rds containing the prompts and messages
described in Chapter 6. The records considered in this
chapter are **MONT **INST **PNST **MENU **sSTART and their
derivatives.

SR 1) BT

Note that for LEX to work a VMF must include **MONT **TEXT
(Chapter 6) **Inst and a VDU control record (Chapter 7). If
any of these are missing an appropriate warning is displayed.

SYSTEM DEFINITION AND DATE - *MONT

FIGURE 5.1 - EXAMPLE OF **MONT FOR ENGLISH

The **MoNT record is the primary system control record and
must exist for LEX to enter a VMF. It is mainly concerned
with defining the control characters used by LEX but it also
defines characters used to reply to specific prompts and sets
the format for the date and time.

Once in LEX it is possible to activate another record with the
same function as **MoNT by using the menu switch option /1.
Such other record must have the key **MOoNTa where a
represents some other character or characters.

Figure 5.1 gives an example of **MoNT designed for the English
language. The following description of each sub-field 1s
based on this example. Recommended changes for use with
other languages are given in Table 5.1.

T.9A.3011/85 5-1

LEX Technical Manual

5-2

Each field in this record is separated by an actual at
the end of a line or by a backslash \. The backslash is always
used regardless of any subsequent redefinition of the visible
equivalent of made in **MoNT. Note that the relative
position of each field is vital so even an empty or redundant
field must still have its (RETURN) m or \ separator

The first field 1in **MONT defmes the decimal values of
characters which are used within LEX for special functions.
Other characters are used as visible equivalents 1in
programming and these are also defined here. Note that this
field is not a complete list of such characters. Others appear
in later fields of **MonT.

If LEX detects the first three characters as 091 then the first
20 sub-fields default to the numbers shown in the example.
(ie _the whole field defaults except for the last two

: TSt reTa isFagiired -y
Zentire’7

If' any non numeric character is found in the string then all
characters from that point onwards default as shown.

Start of key

Visible equivalent of

End of key |

Visible equivalent of (CTRUH or
Visible equivalent of (CTRL)I or
Visible equivalent of (CTRL)R or
Visible equivalent of start of key
Visible equivalent of

Visible equivalent of end of key
Visible equivalent of

Start and end of literal string. If this field
is set to 000, then Australian programming
mode is invoked where all characters are
treated as literals wuntil a start of
programming character is found. An end of
programming character then returns to all
literals. These characters are set up in the
extension of this field in **MoNT.

T.9A.3011/85

e

Chapter 5. System Control Records

062

058

033

040
041

(
)

Visible equivalent of question mark
Indicator to treat next character as a literal

When selecting criteria during list processing
this is the less than operator.

When selecting criteria during list processing
this is the equals operator.

When selecting criteria during list processing
this is the greater than operator.

When selecting criteria during list processing
this is the contains operator.

The pause indicator. This is set to 000 if a
pause is only required on a question mark.

Select left bracket operator
Select right bracket operator

The remaining values do not default if the first is set to 091.
They must be set to the desired value.

038

021

T.9A.3011/85

&

This character is used to signify that a line
longer than the physical screen width is
stored in a document. The character is
removed when stored on disk and only
appears in the final column on screen. Only
one continuation character may be used on a
line and the total length of a line may not
exceed 225 characters.

This character, normally the (ECRUDU or (),
emulates an (EsC)E when at a menu.

The effect of this command at the top
menu, usually **Menu, is to leave LEX.
Setting the parity bit to this character, 1i.e.
add 128 to it’s value (giving 149 in this

example) prevents this means of exiting
LEX. :

5-3

LEX Technical Manual

TABLE 5.1 - FOREIGN LANGUAGE SYSTEM CHARACTERS

German/Scandinavian French Swiss
060 < 060 < 037 %
059 ; 059 ; 059 ;
062 > : 062 > 062 =

- 000 000 000

000 000 ' 000

. 000 000 000

040 (040 (040 (
036 3 036 3 036 $
058 : 058 : 058 :
039 ! 039 ! 039 !
034 " 034 " 034 "
033 ! 033 ! 033 !
064 Qa . 038 & 038 &
060 < 060 < 060 <
061 = 061 = 061 =
062 > 062 > 062 >
058 : 058 : 058

000 000 000

040 (040 (040 (
041) 041) 041)
038 & 038 & 038 &
021 A 021 A 021 A

the month when the full
range is from January to

Each othe next ten f1e1ds must be twracters long.
8 o ‘; gﬁ?& * R R e e LT B g‘ﬁﬁﬁaig?ﬁ&;g’ Ay -1
Lo Con31der the full form of the date in

Enghsh as:
23rd December, 1985

The ten fields provide the following information.

Prefix if day is 01 Usually 2 spaces
Prefix if day is 21 or 31 Usually 2 spaces
Prefix if day is 02 Usually 2 spaces
Prefix if day is 03 Usually 2 spaces
Prefix for other day Usually 2 spaces
Suffix if day is 01 Usually st
Suffix if day is 21 or 31 Usually st
Suffix if day is 02 Usually nd
Suffix if day is 03 Usually rd
Suffix for other day Usually th

5-4 T.9A.3011/85

Chapter 5. System Control Records

Note that strange results may occur if these fields are
anything but two characters in size. If prefixes or suffixes
are not required they should be blank. LEX removes leading
spaces from the date and reduces consecutive spaces within
the date to one space.

This field allows other styles of the date to be used. For
example:

M American November, 2nd 1985
Y Swedish 1985 November, 2nd
(other) English 2nd November, 1985

For English this field is usually zero length.

Field not used and usually zero length.

These two fields provide the valid responses whenever a
query prompt is shown. The literal prompt usually associated
with it iS Answer ¢Y/N) and is found in **1exr. In this example
the response Y is used to indicate the YES response and N the
NO. If they are missing Y and N are assumed respectively.
Only the first character in each field is used.

The n is also used by the No query option when copying
records from one VMF to another with the /4 menu switch
option. :

The a is used at the Select question and when copying records
from one VMF to another. It defines the character which

indicates the query option i.e. it causes a prompt to be issued
before each record is copied.

F and T are used when copying records between VMFs to
indicate whether copying FROM or TO. They are associated
with the **TEXT2 message

Copy From current file (F) or To current file (T) (F/T)

The o and E are used when printing a document with alternate
page titles. They indicate the printing of ODD or EVEN

pages respectively. They are associated with the **TEXTP
message

T.9A.3011/85 5-5

LEX Technical Manual

5-6

Print odd or even numbered pages (O/E)

This field is used when re-justifying a paragraph. If set to S
it assumes that a single space is required at the end of each
sentence after the dot. Any other value and two spaces are
automatically appended.

This field defines the rules to be applied to automatic
hyphenation when re-justifying a paragraph. The following
may be used.

E English hyphenation rules
G German hyphenation rules
N Scandinavian hyphenation rules

(other) Hyphenation disabled

This field is an extension of the first field and the notes
given there are applicable.

000 Start of Australian programming
mode. This character is used to
turn on the ' interpretation of
characters as visible equivalents.
The value 096 (‘) is usually used.

000 End of Australian programming
mode. From this character on all
characters are treated as literals.
The value 039 (°) 1s usually used.

094 ~ Visible equivalent of (CTRDU or (3.
037 % Visible equivalent of CTRLJ or D).
095 _ The standard paint character, -

usually underline. It should only
be changed in exceptional
circumstances as it is essential to
most existing VMF routines.

124 The visible equivalent of
for use in system records only. It
allows a \ to appear in a system

record. The \ is used in device
definition under MS-DOS, so

T.9A.3011/85

Chapter 5. System Control Records

using | allows the \ to be included
as text. It does not apply to the
»*xMoNT record itself. It is normally
set to 092.

047 / Used in the enhanced (EsC)F, (ESC)G
' and (EsC)-G sequences to represent
a break between strings. 1i.e.
aaa/bbb where the first occurrence

of aaa OR bbb is found.

038 & ~ Used in the enhanced (EsC)F, (Esc)a
and (EsC)-6 sequences to represent
a break Dbetween strings, 1.e.
aaabbb where the first occurrence
of aaa AND bbb on the same screen
is found. '

092 \ Used in the enhanced (Esc)F, (ESC)G
and (EsC)-6¢ sequences to represent
a break between strings, 1.e. aaa\nn
where the first occurrence of aaa
in column nn is found.

255 This is the decimal ASCII value of
the character used to flag a
following attribute line in the
input file. It should only be
changed in exceptional
circumstances. A visible
terminator could cause problems
by being used in the text.

000 Not used.

\
Field not used and usually zero length.

K.

During list processing it is possible to delete the selected
records by appending /k/k at the select line. The character
which performs this kill option, k in this example, is defined
in this field.

This character is used as the delimiter in the time. e.g.
20:45:09

T.9A.3011/85 5-17

LEX Technical Manual

5-8

Th1s fxeld sets the format for the short date obtained from the
sequence (esc)t. The first character defines the delimiter
which separates the day from the month and the year. The
next 36 characters represent the months, January to
December, with three characters for each. In the above case
a typical date would be:

31-0ct-85

Thxs field allows different years to be specified in the full
form of the date (Esc)y. It may be positive or negative and is
added to the year.

It is normally set to zero length when the system date is being
used as today’s date but may contain a value when LEX is
being used in countries not using the Julian calendar, e.s.
Buddhist.

These characters are used as vowels for hyphenatxon purposes.
Upper case only is required and the default is as shown. If
using a 7-bit VDU and \ is to be defined as a vowel then its
lower case equivalent | may be defined.

These characters are used in the status line to describe the

position of the cursor when the option was called.

p Page number

L Line number on the current page
A Actual line number in document
¢ Column position

ThlS field defines the string to be ‘entered at the select prompt
in the report generator to obtain the help screen. Note that
the help screen may be displayed automatically if enabled in
**INST.

T.9A.3011/85

AN

Chapter 5. System Control Records

5.2 INSTALLATION DETAILS - *INST

FIGURE 5.2 - EXAMPLE OF **INST

Basic installation details and the various LEX options are held
in a system control record **InsT. Unlike **MONT it is not
divided into fields but is a string record which is best viewed
by use of a form. *INsTFORM is provided for this purpose and 1is
shown in Figure 5.2.

The various fields within the form and their meaning are
considered in this section.

Note that **InsT initialises LEX on entering the VME.
Subsequent changes to the record are not noticed by LEX
until re-entering the VMF or using the menu switch option /1
to reset **INsT. This is done by:

/1(RETURN

Multiple **INsT records may be held in a VMEF but the default
is **INsT and it is this record that is used on first entering the
VMF. Extra **insT records are particularly useful on multi

—_ user systems and take the form **INSTaaza. For example

»*NSTSLOW might be set up for slow terminals reducing the
amount of information sent to the screem to a minimum.
Records like **INsTsLow are set up by:

/1**INSTSLOW(RETURN

" T.9A.3011/85 5-9

LEX Technical Manual

5-10

or, at startup, by including 1in typeahead the string
7/1**INsTsLow. See Chapter 4 for information on typeahead.

This is the key of a *vourorM record describing the VDU type
that is' to be assumed when first entering the VYMF. The
record type) of the YDU record must not be entered. If an
existing work file holds a different VDU type key or if type
ahead is used then this field is ignored. The default is shown
in brackets.

This is the default device that documents are stored on. The
default is shown in brackets. If the Free Form file name
field is set to Y then these details are displayed whenever the
document name prompt appears. If set to N then they are
assumed but the user i1s not made aware of them.

This defines the minimum work file size required when this
VMF is used. The larger the work file the further it is
possible to scroll back through a document. To calculate the
optimum work file size, take the size of the largest document

~anticipated, double 1t and add 70 blocks.

The name of **pNsT record to be used may be specified here.
Do not enter the ** as they are assumed. The default is **pNsT
itself.

The extension applied to document names if one is not
specified at the Document name prompt. If left blank then
no extension is applied.

The extension applied to backups. If left blank no backups
of documents are kept.

The extension applied to the name of temporary work files.
(See Chapter 3 for details on temporary work files). It is also
used for temporary edit files. If left blank it defaults to .T™p.

T.9A.3011/85

Chapter 5. System Control Records

VMF and go straight into it. In such cases the old VMF is
renamed with this extension.

A .C line in a document may be included to enable certain
characters to represent special print time instructions such as
paragraph numbering. This field sets the default values used
unless a specific .C line is encountered.

The characters shown above this field are those suggested for
normal usage in a document and are enabled by including
them in the appropriate column of this field. A . (dot)
disables a feature. Print time instructions are described in
Appendix F.

S|

If set to Y this VMF is opened in multi user mode whereas if
set to N it is opened in single user mode. If left blank the
default mode set by LXINST is used (See Chapter 3).

When set to Y temporary edit files are retained after
abandoning with (Esc)z. '

This feature may only be used -on operating systems that
support version numbering (e.g. VAX/VMS or RSX). If set
to Y then every version of a document is kept and allocated a
new version number.

are displayed whenever the document name prompt appears.
The cursor may be moved back over these details to change
them thereby allowing access to other accounts/devices. If an
N is used here the document device details are fixed and
transparent to the user.

T.9A.3011/85 5-11

LEX Technical Manual

Some operating systems have lower case file names as a
convention and others allow mixed lower and upper case
names. Use of u or L causes LEX to translate document name
characters into lower or upper case respectively. M leaves
them as they are entered. The latter is not advisable unless
essential (for example in Arabic versions) as the case of each
file name must also be remembered. e.g FRED.DOC,
FRED.doc, FrEd.DOc etc.

Note that the document index key is always translated to
upper case or the range described by *CASEFORM.

A y in this field enables the document indexing facmty and
causes the prompt:

Document title :

to appear after the document name. Up to 40 characters
including spaces are available for information to be stored on
the document index. The prompt is taken from **TExT.

If set to Yy a word and character count of the document is
kept. This feature only applies if the document titling field
above has been set to Y to enable the document index. This
feature will slow LEX down.

When set to Y this f1e1d allows a further 40 characters of
information to be stored on the document index. After the
document title a further **TexT prompt appears:

Document detail :

This feature only applies if the Document titling field is set
to Y to enable the document index.

When set to v it enables a document summary to follow the
Document name prompt, e.g.

5-12

T.9A.3011/85

Chapter 5. System Control Records

This feature only applies if the Document titling field is set
to Y to enable the document index.

A Y in this field causes the help screen stored in *HELPV to be
displayed automatically when reorganising a VMF or when
copying records from one VMF to another.

When set to v this causes the help screen associated with the
output format in list processing or mailshot to be
automatically displayed at the Select prompt. The default
screen if not set in the output format record is *HELPS.

When exiting or re- ed1t1ng a document a running display
appears at the bottom of the page with a line and page count
as the document is written away. Setting this field to N
disables the count.

If set to Y an (EsC)z does not immediately abandon the
document but first prompts the **TEXT message

Abandon edit - Are you sure?

This requires a Y response before the document is abandoned.
Any other response causes editing of the document to
continue.

Durmg a list processing run a running display of the keys is
shown as the search takes place. Setting. this field to N
disables this feature.

Whilst prmtmg, the current page being printed is displayed.
Setting this field to N disables this feature.

Thxs field is used in the report generator. A Y results in
fields with a numeric formatting character being set for a
numeric rather than alphabetic comparison. See Chapter 13.

T.9A.3011/85 | 5-13

LEX Technical Manual

5-14

If set to v the selectton criteria used 1s shown at the end of a
list processing run. It is preceded by a **1exTp message. For
example:

Select criteria
NAME=JONES AND TOWN:GLASGOW

If set to Y the number of records selected is shown at the end
of a list processing run. A **TEXT message precedes two
numbers. The first is the number of records meeting the
selection criteria and the second the number of records tested.
For example:

No. of records selected 0005 / 0156

ThlS controls the delay factor and 1S added to that spemf ied in
*VDUFORM.

The sleep factor determines the length of time in seconds for
which non-edit error messages such as Missing Menu are
displayed before LEX returns to the previous prompt or

menu.

If the nu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>